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The “Weight Smoothing” Regularization of MLP for Jacobian Stabilization
Filipe Aires, Michel Schmitt, Alain Chedin, and [Etle Scott

Abstract—In an approximation problem with a neural net- to each output. So, the priori knowledge we have on
work, a low-output root mean square (rms) error is not always the problem consists in the smoothness—in terms of the

a universal criterion. In this paper, we investigate problems inini;ation of some derivatives—of the neural Jacobian
where the Jacobians—first derivative of an output value with

) e
respect to an input value—of the approximation model are Profiles: {Jux; k = 1, ---, m} where Ji;, =" ((9yx/9x;);
needed and propose to add a quality criterion on these Jacobians ¢ = 1, - .-, n) is the kth Jacobian profile. A profile is defined

during the learning step. More specifically, we focus here on a5 3 discretized function with respect to some ordered index
the approximation of functionals A, from a space of continuous

. def . ' I
functions (discretized in pratice) to a scalar space. In this case, the and a neural Jacobiah, = (Jyx/Jx;) is the first derivative
approximation is confronted with the compensation phenomenon: of the outputy, with respect to the input; of the neural
a lower contribution of one input can be compensated by a network gy We focus on neural models but the following

larger one of its neighboring inputs. In this case, profiles (with . . Lo _
respect to the input index) of neural Jacobians are very irregular discussion could be applied in the general context of statistics.

instead of smooth. Then, the approximation ofA becomes an N our case, the neural Jacobians have an important physical
ill-posed problem because many solutions can be chosen by themeaning expressing the link between the frequency of the

learning process. We propose to introduce the smoothness ofmeasurement channels to the atmospheric layers sounded (see
Jacobian profiles as ana priori information via a regularization our application on Section I11).

technique and develop a new and efficient learning algorithm, . . - . .
called “weight smoothing.” We assess the robustness of the weight A Problem is said ill-posed if its solution may not exist,
smoothing algorithm by testing it on a real and complex problem be nonunique or nonstable. The approximation.4fis an

stemming from meteorology: the neural approximation of the ill-posed problem due to the nonunicity and the nonstability

forward model of radiative transfer equation in the atmosphere. ¢ the solution Regularization [21] is one way to make our
The stabilized Jacobians of this model are then used in an bl I ’ d by stabilizing th | 3] bi Th
inversion process to illustrate the improvement of the Jacobians problem well-posed by stabilizing the neural Jacobians. e

after weight smoothing. idea of regularization is to add a penalty te@ to the
usual quality criterionC; in the learning process, witld;
usually chosen as the mean square error in neural ouputs.
This penalty term uses a regularizer (or stabiliZef)) which
forces the solution of the optimization problem to satisfy
. INTRODUCTION some constraints expressing ta@riori knowledge about the

E study in this paper the approximation of a functionadpproximation problem.

A by a multilayered perceptropy-. The functional ~ According to [22], a regularizer is a lower semicontinuous
A describes dependencies between a sp&teof smooth functional€2(-) that possesses the following three properties.
functions f: R — IR continuousC*, C?, etc. and the space « The solution~ of the inverse problem belongs to the
R™ domain of definition of the functional(-).

A: f — y; wheref € M andy € R™. @ * On its domain of defipition, the functiondd(-) admits
real-valued non negative values.

In our applicationf is a temperature profile in the atmosphere, « The setsM, = {z: Q(z) < ¢}, ¢ > 0, are all compact.
f: pressure— temperature. In practice, the functiohis  Regularization decreases the representation’s capability of
discretized(f < = = (z;; 4 = 1, ---, n)) but we cannot the network but increases the bias (bias/ivariance dilemma
consider the components;;; ¢ = 1, ---, n) in the input of [10}). S0, the principle of regularization is to choose a well-
the neural network independently. The are ordered by the gefined regularizer to decrease the variance and to affect the
index ¢ (for example the altitude) and hence possess SOH&s as little as possible [4].
regularities of f. So, the regularity properties of functioh  gyamples of regularizers are the double backpropagation

ml_Jst_ be transposgd in its discretizationIn our case, thga (DBP) [7] and the input perturbation (IP) [3] wich both
priori knowledge is that the neural approximator descrlbesf&Ce the neural functionyyy to have small perturbations

functional that has a smooth contribution of ordered inpufs the outputsy for small perturbations in the inputs.
During the learning step, they add the constraint of minimizing
Tthe magnitude of neural Jacobiadg,. With the same goal

Index Terms—nverse problems, ill-posed problems, MLP, neu-
ral jacobians, regularization.
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have also tried to minimize the second derivative’s magnitudeetwork with one hidden layer) are
And recently, [14] have proposed to learn simultaneously a

functional A and its Jacobians. Ji(W, z) def dyx
In this study, we develop a specific and efficient algorithm, O
the “weight smoothing” (WS) regularization, to introduce the _ / ‘
constraint of Jacobian profile smoothness during the learning - ze; Wk ; Wy T | Wiy (3)
J 1 ? 0

step. This is a new approach for regularization, very different
from previously quoted methods using neural Jacobians liker a more complex MLP network, with many hidden layers,
DBP, IP, or GRN that only minimize the neural Jacobiathere exists a BP algorithm computing efficiently the neural
amplitude to smooth the neural-network behavior. The WScobians [4].

regularization is only appropriate when inputs of network We smooth thekth Jacobian profiles,,, using a linear
are the discretization of a smooth function (so a natur@lkhonov’s regularizer [21] (also called the Phillips—Twomey
ordering and regularity exists in inputs). This type of functionahethod [16]) of the form$2(J,) = (B - J.x)?. The regular-
approximation is widespread. Examples include the retrieviahtion matrix B could have different meanings. We give two
of temperature or gas concentration profiles in the atmospheseamples of Tikhonov's regularizer with matri; and B,

from space observed outgoing radiances and, generally, all

problems with smooth input data, like the salinity in the ocean -1 2 -1 0 - .0
(smoothness due to the diffusion), the propagation speed in a 0 -1 2 -1 0
geological layer (smoothness due to the homogeneity of the B = | : - - - - -
Iayer), etc. ' ' ' . 0 —1 2 1 0

This paper is organized as follows: we first describe the 0 ... 0 —1 2 1
regularizer and the resulting general learning algorithm. Then,

" PR . . - -1 3 -3 1 0 -- 0
an additional specification is introduced into the algorithm in )
order to speed up the learning step. Finally, a complex and real 0 -1 3 =3 1 0
example stemming from meteorology is described. It concerns Bo=1| ¢ - 0 e
the approximation of the radiative transfer in the atmosphere 0 -1 3 -3 1 0
(direct and inverse problem). 0o --- 0o -1 3 -3 1

For matrix By, we want to minimize the discrete second-
Il. REGULARIZING BY SMOOTHING JACOBIAN PROFILES derivative of the Jacobian profile (with respect to the input
index), which means that the Jacobian profile should be as
A. Specifying the Smoothness of Jacobian Profiles linear as possible (this is called a linear profile constraint).
_ . Theregularizef(») = (By-2)? = 2" -Bt - By -z = 2*-H; -
The MLP neural networkgw () carries out a function z is real-valued and nonnegative because the matiix= B!

x — y, wherex € R", y € R™, and W is the set of _ p o degenerate and possesses two zero eigen values that

parameter§ of the _neural network. For example, in a ML&)rrespond to the two undetermined parameters of a linear
network with one hidden laye$;, the kth output component profile 7

of the network is defined by Similarly for B,, we want to minimize the discrete third-
derivative of the Jacobian profile to have a profile as quadratic

k() = Z w;p, - o(a;) as possible (this is called a quadratic profile constraint). The
Jes regularizerQX(z) = z* - Hy - z is real-valued and nonneg-
ative because the matrikl, = B} - B, is degenerate and
- 2; Wik U<ES: Wiy xz) (2) possess three zero eigen values that correspond to the three
JCS1 1CSo

undetermined parameters of a quadratic profile
wheres is a sigmoid functiong; is the activity of unity and.s; All the a priori information introduced is on matrbs.
g " y J ‘" The new criterion become&?(W) = C1(W) + ~ - Co(W),

s theth layer of the network (witfi = 0 for the input layer). where~ is the regularization parameter balancing the impor-
We have deliberately omitted the usual bias terms in expression i 9 b 9 P

H 7 _ r m
(2) to simplify the notation without loss of generality. ance of the two criteria and (W) = (1/2P) - ZiL,

P
To choose the parametelf, we apply a learning algorithm Q(IZS’;(BW/éxuza)l'to the identity matrix, the regularizer minimizes
using a data set aP exampleg(z?, #*);p=1, ---, P). We q y ’ 9

. . . thﬁ neural Jacobian’s magnitude, which leads to an equivalent
assume that these axamples are independent and |dent|ctaec¥mi Ue to that quoted in introduction (DBP, IP, and GRN
distributed and generated by the joint distribution (ef y) q q T

[4]. A quality criterion C; is defined on this training set. techniques).

We used the error backpropagation (BP) algorithm [19] for ) ) i

the optimization step. We introduc priori information to B- Global Smoothing of Jacobian Profiles

regularize the learning step by adding a constraint to smoothTo estimate parameters of the network by gradient-based
the neural Jacobian profiles,, = ((Qyx/dx;); ¢ = 1, ---, optimization (e.g., stochastic gradient descent or conjugate
n). The neural Jacobians in the previous example (an MldPadient optimization), we require the derivative 6{W).
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The term 9C(W)/0w is the same as in the usual BP ;
algorithm and the computation &fC>(W)/dw follows: Y

ICH(W) 1~ 0
“ow 22 g )

= kzn:;(B T)t - <B~ <%J*k)> 4)

whereA! is the transpose of matrix. We give some practical
details about the derivative in (4) with the example of the
previous matrixB. in the Appendix.

The stochastic gradient version of the regularized learning
algorithm becomes:

* propagate example in the network by relation (2);
e compute the Jacobiang; with formula (3);

. (r:i(t)rmute the derivativéC; (1W)/0w by usual BP algo- a ‘1’2;4’1' ' rr I'l INPUTS i

» compute the derivativeC> (W) /0w by formula (4) (see Fig. 1. Example of smooth of weight vectdV’ .
(14) in the Appendix for a more detailed expression); j5:0pians (input—

* modify the synaptic weight$V" by stochastic gradient yfiles in the hidden-layer may still be very irregular and
descent. exhibit the compensation phenomenon: a lower contribution
This algorithm is computer intensive. For functions inf one input can be compensated by a larger one of its

spaces of relatively low dimensions, it can be used as pigeighboring inputs (this is a particular kind of overfitting
sented. In higher dimensions, it is possible to begin th®ncerning the smoothness of the underlying Jacibian profiles).

learning step by the usual BP algorithm and then use tifewe minimize the norm of the two vectors, the internal

regularization technique to smooth the Jacobian profiles. profiles have to be smooth. The minimization of the norm
of the second vector specifies that the hidden-layer of the

C. The “Weight Smoothing” Regularization network is a kind of filtering preprocessing step solving the
In this section we search for a less complex, more rapﬁ:gmpensation phenomenon.directly. So, we substitute the new

and efficient algorithm. Let us examine in more details tHRENAIY termCs for the previousC,

minimization of the costC,. We have 1 D )
/
: W) =353 [V X3 (w,0)
p=1 kes, i'e51

output) will be smooth, but the internal

(B- 1) =D olay) wyp (B Way)
€Sy
+ > (B-W.,) (7)
=(Wy - &(W1))? (5) ; !
where W} is the vector((w,;); J/ € S1) and @(W1) is the  with 4/ a parameter balancing the importance of the weight
vector ((o'(ay) - (B - W.y)); J/ € S1). The minimization decay and the preprocessing filter regularizers. Then during
of the smoothing criterion is then equivalent to the orthoggearning, we iteratively modify the weights;; as in the usual

nalization of the two vectors in (5). By the Cauchy-Schwar@p but with an additional term, for every examgle ) in

inequality the training set
0<(B-J,;)? (for i € So: w:;H
g(W*,2) — §)* (B -Wi)*
—wt. —p- ’ B S R
< Z wfr;; | Z o'(ay)? - (B-Wiy)? A owl; tm owl; ’
7ES, 7ES fori e S wf;H
ANg(Wt,2) — §)2
<M. wak . Z(B'W*J’)2 (6) :ng_p,< (g( 8w3 ) et ).
JES yES \ i
where M = max, ¢'(r) < +o0. (8)
The minimization of the terms{wj,,;)2 is the classical For example, with the matrix3, we have
“weight decay” regularization. And the minimization 6B - (B - Wij)Q . . . .
W.,,)? (independent of the ouput) smoothes the weight — 57 = (—w;_g; +6w;_o ; — 15w;_; ; + 20w; ;
profiles entering unitg’ € 51, and then smoothes the contri- 7 . . .
bution of inputs to the hidden layer (Fig. 1). This approach is — 1wity j + 6wiyo j — Wiys )- ()

more constrained than the algorithm developed in Section II-This algorithm, called WS regularization, is very cheap
B because if we orthogonalize the two vectors, the globbécause it requires only few additions and multiplications more
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Fig. 2. Typical temperature profiles in the atmosphere.

than the usual BP for each weight modification. And as we wilNational Oceanic and Atmospheric Administration of the
see in the next section, the results of learning are exactly whitited States) series since 1979, measures the brightness

we expect. temperature emitted by the atmosphere in the infrared and
the microwaves ranges. Of its 27 channels (that correspond

[ll. APPLICATION TO THE RADIATIVE to 27 frequencies) measuring the brightness temperature, 11

TRANSFER IN THE ATMOSPHERE are “sensitive” to temperature and then are used to restitute

Our application is based on the radiative transfer equatigis Profile.

(RTE) in the earth’s atmosphere, which can be summarized byln this section, we want first to determine the magnitude
I(v) of these 11 channels, using only the information from
I=AG) (10)

the temperature profile. One limitation of the direct model of

where I € R" is the measured brigthness temperaturé%o) is that here@ represents the temperature profile ahd
and G € RR™ the geophysical parameters describing trHi@e brightness temperatures measured in the subset of the 11
atmospheric situation (surface and atmospheric temperatifdnperature sensitive channels. The atmosphere is discretized
concentration of various gases like water vapor or ozoffe 60 atmospheric levels, so the varialflee IR®.

at different altitudes on the atmosphere). For the completeThis application is clearly a functional because the input
equation involving the physical parameters, see [20]. Amorsgace (the space of temperature profiles) is a space of real,
these geophysical parameters, we only consider the vertidigicretized and continuous functiorfs pressure— tempera-
temperature profile. It is a function of the altitude or of théure. The compensation phenomenon is present in this model
atmospheric log-pressure (these two quantities are quasiliecause the error on the transmission factor of a given atmo-
early dependent). We show five typical temperature profiles spheric layer can be compensated by one of its neighboring
Fig. 4, belonging to five different air masses (tropical, midayers [18]. So we apply our WS regularization technique with
latitude type 1 and 2 and polar type 1 and 2). Note thatquadratic constraint for the Tikhonov’s regularizer (matrix
the temperature increases smoothly with the log-pressure. Tg of Section II-A).

direct problem concerns the determination of the measuredrhe network used here is a MLP network with one hidden
brightness/ from the geophysical variables. In the inverse |ayer. The architecture has 60 units in the input layer (the
problem, we try to retrieve the geophysical variabledlike 60 atmospheric temperatures between zero and 59 km), 50
the vertical atmospheric temperature profif¢P) in (10)] units in the hidden layer (this number was chosen empirically
from the measured brightness temperatufgs) in various py trial in the training set) and 11 units in the output layer

spectral intervals. (the 11 brightness temperatures of TOVS channels sensitive
o _ to temperature).
A. Regularization of the Direct Model For the training and the testing data set we have merged the

The TOVS instrument (TIROS-N Operational Verticaiwo climatology data bases TIGR2 [8] and TIGR1 [5]. TIGR
Sounder), flown aboard the satellites of the TIROS-N/NOAAtands for “Thermodynamical Initial Guess Retrieval” and is
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a vast and as diversified as possible set of real atmosphere3he WS regularization is then satisfactory because it pro-
For each of these atmospheric situations, the correspondihges a neural estimatigny (-) with smooth neural Jacobian
TOVS brightness temperatures are then computed by the gifiles. These neural Jacobian profiles are also consistent
(automatized atmospheric absorption atlas) algorithm [2@}ith the physical knowledge we have about the real Jacobian
These two data sets come from a sampling process of abptdfiles of A. They are positive and the pressure where the
100 000in situ measurements (geophysical parameters). Thégcobian of a channel is maximum indicates the atmospheric
are two reasons to perform this sampling process: first, sotager making the largest contribution to the brightness tem-
of the 100000 radiosondes measurements have poor qugbigyature.
(missing data, instrumental noise, etc.), so quality criteria haveThe availability of good quality neural Jacobians is very
to be used to select only adequate measurements. Secimgprtant. One application of these neural Jacobians is their
the simulation of the brightness temperature spectrum emittask in the numerical weather prediction model of the Meteoro-
by the atmosphere for each radiosonde measurements is Vegycal Operational Centers. These models uses the technique
computer expensive. We extract from the TIGR data base 17&lvariational assimilation [18]: if we have an initial estimation
atmospheres for the learning step and 681 atmospheres forahthe state of the atmosphere given by a first gugsand a
generalization step. satellite measurement of brightness temperafdrperturbed

We apply the BP algorithm with and without WS regularby an instrumental noise, the estimation of the state of the
ization. We empirically choose = 1.0 to tend to make the atmosphere becomes
two parts of the criterion data/regularization have comparable ., _ . . 1 -
weights. During the WS learning, we have observed that thef =F + 57 Ky - (Kp S5 Kp +5)7 (F = Ky - f)
weight decay term (acting in connections between layger (11)

and layersSs) has no significant effect on the results. So, we . . . )
take ' = 0.0 in (8). The most important part of the wsWhere5% is the covariance matrix of first guess error aiig

regularization is the smoothing of input contributions to thi$ the Jacobian matrixd£j. /8 ). The major advantage of
hidden layer (“filtering preprocessing” step). the ne_ur_al ?]aC(_)blans |s_the rapidity for their computation, a
We have tested similarly two classical regularization tecf@rd limitation in operational models.
nigues: the “weight decay” and the “weight elimination.” The
penalization parameter was choosen empirically by trial B Neural Inversion of the Radiative Transfer Equation
ensure a maximum performance level on both the training andTo show that we obtain a more robust estimation of the
the testing set (a proper method would use a cross-validatRME with the WS learning, we study the impact of this
approach). The root mean square (rms) errors obtained wigyularization in a neural inversion technique. The inverse
these two regularization techniques during the generalizatiproblem of radiative transfer is very important: a vertical
step are close to 0.45 Kelvin. This test error is too high faounder determines the thermodynamical variables in the
our purpose, so these two techniques are not well adaptechosphere [5]. So we have to invert the previous direct model
for this kind of problems. On the other hand, rms test error$ of radiative transfer. The approximation of ! is also
for the neural estimation with or without ws regularizatioran ill-posed problem because its solution can be: nonexistent
are good: an rms test error in the brightness temperatu(eése to noise in measurements), nonunique (with the prob-
lower than 0.2 Kelvin, in data between 150 and 30Belvin. lem of compensation phenomenon) or nonstable (because the
This is a good result because the errors are comparahigmerical computations are ill-conditioned) [18].
to the noise of the TOVS instrument. As WS restricts the One strategy for the resolution of the inverse problem is to
representation capabilities of the neural network, the traininge a neural networky; to compute directly the temperature
performances should be worse. The fact that we obtain saprefile (in the output of hyy-) with the brightness temperature
learning errors with and without WS illustrates perfectly theneasurements (in the inputof hyy-). See [9] for this direct
compensation phenomenon: many physical models can gimgersion with the TOVS instrument and [1] for the application
the same level of error in output because the learning problefithis technique to the IASI interferometer. The neural model
is under-constrained. The goal of WS regularization is oy could also be regularized, for example to impose a
avoid solutions created by the compensation phenomenon, aodstraint of smoothne<s3 - )2 on the temperature profiles
choose the most realistic and physically acceptable solutiondbthe output ofhy-, where B is one smoothing matrix of
the estimation problem among all solutions. Section II-A. An approach to solve this general problem in
In Fig. 3, we have represented the neural Jacobian profiteg linear case could also be found on [15].
for two networks (with and without regularization) and for Other neural techniques of inversion, such as “distal learn-
four different channels of TOVS taken among the 11. Fig.iBg” [12], “indirect inversion” [6] or “iterative inversion”
shows that without WS, the profiles of neural Jacobians di3], first estimate the direct moded by a MLP and then,
very irregular. This is due to the compensation phenomenadnvert it using its neural Jacobians. This strategy solves some
an error in the contribution of one atmospheric layer idifficulties, particularly the multivalued aspect of the inverse
compensated by errors in the neighboring layers. This is whynction [12].
a bad solution (in term of neural Jacobians) can give a goodHere, we have used the iterative inversion because it is
rms test error. On the other hand, the neural Jacobian profites excellent test for the quality of the direct model and its
of the regularized network are smooth. Jacobians: after estimating the direct modeby a network
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Fig. 3. Neural Jacobian profiles of the direct model for TOVS, for one atmospheric situation of the TIGR data base, with and without “weight smoothing”
(v = 1.0, v/ = 0.0 and learning rate= 0.1).

gw (-) (Section llI-A), for a given radiance measurement » modify the current solution* using: z**! = z* — X -
IR™, we search for the temperature profitec IR™ such that (0/9z)(gw (=) — y)?, where ) is the learning step-rate
aw (z) = y. This is achieved by iterative modifications in the  of the inversion algorithm.
current solutionz* using the neural Jacobians, according to:  This algorithm can be used to help solve an inverse problem.
« take a first guess® (we always choose the mean temBut it can also be used to analyze what a neural netwark)
perature profile{z) in our TIGR data bases); has learned. Depending on the initial gue$8s this inversion
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Fig. 4. Retrieved temperature profiles from the TIGR data base, with the iterative inversion algorithm, using the neural direct model with and without
“weight smoothing” (A = 0.1 and 29 = (a}).

process can give different solutions and, thus, can indicate In Fig. 4, we represent four examples of this inversion
whether the direct model is robust or not. process. Each graph compares results with and without WS
We have tested this inversion technique with the two netegularization. The root mean square error in the restitution of
works gw (-) (with and without WS) of Section II-C which these four temperature profiles is given in Fig. 5. Fig. 4 shows
simulate the direct radiative transfer. Then, for a given TOVBat, without WS regularization, the retrieved temperature
measuremeny (the 11 brightness temperatures of the TOV$rofiles are very irregular: oscillations around the real profile
channels sensitive to atmospheric temperature), we searcheia observed. The increase of the oscillations in the top of the
the corresponding temperature profilesuch thatgy (z) = atmosphere is due to the discretization (atmospheric layers of
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adapted for the analysis of the different solutions of the
inversion problem.

We have then shown that our regularized model of the direct
radiative transfer equation in Section IlI-A is more robust than
those without WS. We have shown the advantages that the WS
regularization can offer to neuronal inversion algorithms (like
“distal learning,” “iterative inversion,” or “indirect inversion”)
in cases where the function to invert is a functional sensitive
to the compensation phenomenon.

IV. CONCLUSION

We have presented an original approach to the regularization
of MLP: the WS algorithm. For functional approximation
with inputs resulting from the discretization of a continuous
function, the WS regularization smoothes the neural Jacobian
profiles with respect to the input index. Solving the compen-
sation phenomenon in such approximations, this algorithm
makes it possible to estimate a physically acceptable and
more robust solution. This specific regularization technique
appears to be more efficient, in our case, than other classi-
cal regularization algorithms like “weight decay” or “weight
elimination.”

We have illustrated the efficiency of this algorithm through
a real and quite complex problem stemming from space
meteorology: the radiative transfer model in the earth’s at-
mosphere and more particularly, the role of the temperature.
This application has demonstrated the rapidity of the learning
algorithm and the quality of solutions. The more robust neural
Jacobians obtained with WS regularization may be used, for
example, in a Numerical Weather Prediction models. They
could also be used in neural techniques of inversion like
“iterative inversion,” “distal learning” or “indirect inversion”
that use the neural Jacobians. We have tested our regularized
direct neuronal model in an iterative inversion algorithm
\gﬁwre the quality of neural Jacobians is essential to estimate

neural direct model with and without WS regularizatioh = 0.1 and atmospheric temperature profiles from space measurements of

ro = <:T> )

1 km) used for the temperature profile restitution. The TOVS
radiometer do not have channels sounding this pressure rang
at such a high vertical resolution, so the number of degrees

the earth outgoing radiance.

APPENDIX

@ € Sp is an input component of the networl, in
the hidden layerS; and k& an output component itys, the

freedom in the restituted profile is higher than the numbgfrivatives in (4) become

of pieces of information given by the TOVS instrument. AT , )

However; this problem of oscillations from the surface to the T Wik (o"(az) - =3 - wis + 0’ (az) - 6i7)

top of the atmosphere, is solved to a large extent with the WS ¢ 5.7, / (12)
procedure. wg =wij-o'(az) - 6,

The results of the inversion algorithm are then substantially

improved if we use our regularized model of the RTE. Th@heres is the Kronecker delta symbol. Then
profile retrieved with WS regularization is a good estimation

of the real smooth profile both in term of errors (Fig. 4) and ( 9C2(W) _ BN o T et ol () . & Y

in term of the smoothing characteristics of the profile. owy; (B - (o"(ay) - 2 - Wey + 0"(a3) - 8.3))
Other advantages of this regularized inversion technique

are that the inversion process is rapid, the Jacobians of thg : <ngk (B~ J*k)) (13)

neural model are available (this is a very important fact for ICH (W) kCSe

the “variational assimilation” technique in numerical weather # =0'(a;) (B - W) - (B-J,1).

prediction models) and that the inversion technique is well-* k
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For example, with the previous matri®,, we obtain [5]
(00 (W)
Tﬁ = z% (O'H(aj) - (—wﬂ’j —|— 3wl,+17j [6]
' CSo
"y = 3wyryaj+ Wit ;) + 07 (a;) [7]
. (_67,’,'i + 36'L’—|—1,i - 367,’—1—2,% + 67,’—1—3,'?)) 8]
. Z Wik - (= g+ 316 — 3T g2k
keESy
[9]
+ JL’+3,k)
AC, (W
8uEA~ L > o'(ay) - (—wy 5+ Bwygy; — Bwyga; 1O
Jk T [11]
Fwoys ) (=T 430400 — 30 0k [12]
[13]
+ ']'L,+3,’;)
N [14]
(14)

[15]
where So = {1,---,n — 3} takes into account the edge
condition of J,. [16]

[17]

(1]

(2]

(3]
(4]
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